今日滚动
 
 您的位置:首页 > 环保知识 > 名词解释
 
地下水
添加时间:8/13/2013
来源:百度百科   字体调整  

 

地下水,是贮存于包气带以下地层空隙,包括岩石孔隙、裂隙和溶洞之中的水。地下水是水资源的重要组成部分,由于水量稳定,水质好,是农业灌溉、工矿和城市的重要水源之一。但在一定条件下,地下水的变化也会引起沼泽化、盐渍化、滑坡、地面沉降等不利自然现象。
 
基本概念
 
地下水(ground water)泛指存在于地下多孔介质中的水,其中多孔介质包括孔隙介质、介质和岩溶介质。
 
 
结构运动
 
地下水作为地球上重要的水体,  地下水与人类社会有着密切的关系。地下水的贮存有如在地下形成一个巨大的水库,以其稳定的供水条件、良好的水质,而成为农业灌溉、工矿企业以及城市生活用水的重要水源,成为人类社会必不可少的重要水资源,尤其是在地表缺水的干旱、半干旱地区,地下水常常成为当地的主要供水水源。据不完全统计,70年代以色列国75%以上的用水依靠地下水供给,德国的许多城市供水,亦主要依靠地下水;法国的地下水开采量,要占到全国总用水量1/3左右;像美国,日本等地表水资源比较丰富的国家,地下水亦要占到全国总用水量的20%左右。中国地下水的开采利用量约占全国总用水量的10—15%,其中北方各省区由于地表水资源不足,地下水开采利用量大。根据统计,1979年黄河流域平原区的浅层地下水利用率达48.6%,海、滦河流域更高达87.4%;1988年全国270多万眼机井的实际抽水量为529.2亿立方米,机井的开采能力则超过800亿立方米。
 
问题的另一面,由于过量的开采和不合理的利用地下水,常常造成地下水位严重下降,形成大面积的地下水下降漏斗,在地下水用量集中的城市地区,还会引起地面发生沉降。此外工业废水与生活污水的大量入渗,常常严重地污染地下水源,危及地下水资源。因而系统地研究地下水的形成和类型、地下水的运动以及与地表水、大气水之间的相互转换补给关系,具有重要意义。
包气带水指潜水面以上包气带中的水,这里有吸着水、薄膜水、毛管水、气态水和暂时存在的重力水。包气带中局部隔水层之上季节性地存在的水称上层滞水。
潜水是指存在于地表以下第一个稳定隔水层上面、具有自由水面的重力水。它主要由降水和地表水入渗补给。 承压水是充满于上下两个隔水层之间的含水层中的水。它承受压力,当上覆的隔水层被凿穿时,水能从钻孔上升或喷出。按含水空隙的类型,地下水又被分为孔隙水、裂隙水和岩溶水。孔隙水是存在于岩土孔隙中的地下水,如松散的砂层、砾石层和砂岩层中的地下水。裂隙水是存在于坚硬岩石和某些粘土层裂隙中的水。岩溶水又称喀斯特水,指存在于可溶岩石(如石灰岩、白云岩等)的洞隙中的地下水。
地下水是一个庞大的家庭。据估算,全世界的地下水总量多达1.5亿立方公里,几乎占地球总水量的十分之一,比整个大西洋的水量还要多!
 
分类介绍
 
根据地下埋藏条件的不同,地下水可分为上层滞水、潜水和承压水三大类。
上层滞水是由于局部的隔水作用,使下渗的大气降水停留在浅层的岩石裂缝或沉积层中所形成的蓄水体。
潜水是埋藏于地表以下第一个稳定隔水层上的地下水,通常所见到的地下水多半是潜水。当地下水流出地面时就形成泉。
承压水(自流水)是埋藏较深的、赋存于两个隔水层之间的地下水。这种地下水往往具有较大的水压力,特别是当上下两个隔水层呈倾斜状时,隔层中的水体要承受更大的水压力。当井或钻孔穿过上层顶板时,强大的压力就会使水体喷涌而出,形成自流水。
一、地下水分类的原则
一种是根据地下水的某一特征进行分类;另一种则是综合考虑地下水的若干特征进行分类。
二 、地下水的分类
1、按起源不同,可将地下水分为渗入水、凝结水、初生水和埋藏水。
  岩溶水
渗入水:降水渗入地下形成渗入水。
凝结水:水汽凝结形成的地下水称为凝结水。当地面的温度低于空气的温度时,空气中的水汽便要进入土壤和岩石的空隙中,在颗粒和岩石表面凝结形成地下水。
初生水:既不是降水渗入,也不是水汽凝结形成的,而是由岩浆中分离出来的气体冷凝形成,这种水是岩浆作用的结果,成为初生水。
埋藏水:与沉积物同时生成或海水渗入到原生沉积物的孔隙中而形成的地下水成为埋藏水。
2、按矿化程度不同,可分为淡水、微咸水、咸水、盐水、卤水。
详见下表:
地下水按矿化度分类表
地下水类型总矿化度(g/l)
淡 水 <1
微 咸 水 1 ~3
咸 水 3 ~10
盐 水 10 ~50
卤 水 >50
3、按含水层性质分类,可分为孔隙水、裂隙水、岩溶水。
孔隙水:疏松岩石孔隙中的水。孔隙水是储存于第四系松散沉积物及第三系少数胶结不良的沉积物的孔隙中的地下水。沉积物形成时期的沉积环境对于沉积物的特征影响很大,使其空间几何形态、物质成分、粒度以及分选程度等均具有不同的特点。
裂隙水:赋存于坚硬、半坚硬基岩裂隙中的重力水。裂隙水的埋藏和分布具有不均一性和一定的方向性;含水层的形态多种多样;明显受地质构造的因素的控制;水动力条件比较复杂。
岩溶水:赋存于岩溶空隙中的水。水量丰富而分布不均一,在不均一之中又有相对均一的地段;含水系统中多重含水介质并存,既有具统一水位面的含水网络,又具有相对孤立的管道流;既有向排泄区的运动,又有导水通道与蓄水网络之间的互相补排运动;水质水量动态受岩溶发育程度的控制,在强烈发育区,动态变化大,对大气降水或地表水的补给响应快;岩溶水既是赋存于溶孔、溶隙、溶洞中的水,又是改造其赋存环境的动力,不断促进含水空间的演化。
4、按埋藏条件不同,可分为上层滞水、潜水、承压水。
上层滞水:埋藏在离地表不深、包气带中局部隔水层之上的重力水。一般分布不广,呈季节性变化,雨季出现,干旱季节消失,其动态变化与气候、水文因素的变化密切相关。
潜水:埋藏在地表以下、第一个稳定隔水层以上、具有自由水面的重力水。潜水在自然界中分布很广,一般埋藏在第四纪松散沉积物的孔隙及坚硬基岩风化壳的裂隙、溶洞内。
承压水:埋藏并充满两个稳定隔水层之间的含水层中的重力水。承压水受静水压;补给区与分布区不一致;动态变化不显著;承压水不具有潜水那样的自由水面,所以它的运动方式不是在重力作用下的自由流动,而是在静水压力的作用下,以水交替的形式进行运动。
 
贮存空间
 
地下水由于埋藏于地下岩土的空隙之中可以流动的水体,因而其分布、运动和水的性质,要受到岩土的特性以及贮存它的空间特性的深刻影响。与地表水系统相比,地下水系统显得更为复杂多样,并表现出立体结构的特点。
含水介质、含水层和隔水层
自然界的岩石、土壤均是多孔介质,在它们的固体骨架间存在着形状不一、大小不等的孔隙、裂隙或溶隙,其中有的含水,有的不含水,有的虽然含水却难以透水。通常把既能透水,又饱含水的多孔介质称为含水介质,
  相关书籍
这是地下水存在的首要条件。 所谓含水层是指贮存有地下水,并在自然状态或人为条件下,能够流出地下水来的岩体。由于这类含水的岩体大多呈层状、故名含水层,如砂层、砂砾石层等。亦有的含水岩体呈带状、脉状甚至是块状等复杂状态分布,对于这样的含水岩体可称为含水带、含水体或称为含水岩组。
对于那些虽然含水,但几乎不透水或透水能力很弱的岩体,称为隔水层,如质地致密的火成岩、变质岩,以及孔隙细小的页岩和粘土层均可戌为良好的隔水层。实际上,含水层与隔水层之间并无一条截然的界线,它们的划分是相对的,并在一定的条件下可以互相转化。如饱含结合水的粘土层,在寻常条件下,不能透水与给水,成为良好的隔水层;但在较大的水头作用下,由于部分结合水发生运动,粘土层就可以由隔水层转化为含水层。
含水介质的空隙性与水理性
1.含水介质的空隙性 含水介质的空隐性是地下水存在的先决条件之一。空隙的多少、大小、均匀程度及其连通情况,直接决定了地下水的埋藏、分布和运动特性。通常,将松散沉积物颗粒之间的空隙称为孔隙,坚硬岩石因破裂产生的空隙称裂隙,可溶性岩石中的空隙称溶隙(包括巨大的溶穴,溶洞等)。
1)孔隙率(n)又称孔隙度,它是反映含水介质特性的重要指标,以孔隙体积(Vn)与包括孔隙在内的岩土体积(V)之比值来表示,即n = Vn/V×100%。孔隙率的大小,取决于岩土颗粒本身的大小,颗粒之间的排列形式、分选程度以及颗粒的形状和胶结的状况等。
 
 地下水研究模型
必须指出,孔隙率只有孔隙数量多少的概念,并不说明孔隙本身的大小(即孔隙率大并不表示孔隙也大)。孔隙的大小与岩土颗粒粗细有关,通常是颗粒粗则孔隙大,颗粒细则孔隙小。但因细颗粒岩土表面积增大,因而孔隙率反而增大,如粘土孔隙率达到45—55%;而砾石的平均孔隙率只有27%。
2)裂隙率(KT)裂隙率即裂隙体积(VT)与包括裂隙在内岩石体积(V)之比值:KT = VT/V×100%。与孔隙相比裂隙的分布具有明显的不均匀性,因此,即使是同一种岩石,有的部位的裂隙率KT可能达到百分之几十,有的部位KT值可能小于1%。
3)岩溶率(KK)溶隙的多少用岩溶率表示,即溶隙的体积(Vk)与包括溶隙在内的岩石体积(V)之比值:K k = Vk/V×100%。溶隙与裂隙相比较,在形状、大小等方面显得更加千变万化,小的溶孔直径只几毫米,大的溶洞可达几百米,有的形成地下暗河延伸数千米。因此岩溶率在空间上极不均匀。
综上所述,虽然裂隙率(KT)、岩溶率(Kk)与孔隙率(n)的定义相似,在数量上均说明岩土空隙空间所占的比例。但实际意义却颇有区别,其中孔隙率具有较好的代表性,可适用于相当大的范围;而裂隙率囿于裂隙分布的不均匀性,适用范围受到极大限制;对于岩溶率(Kk)来说,即使是平均值也不能完全反映实际情况,所以局限性更大。
2.含水介质的水理性质 岩土的空隙,虽然为地下水提供了存在的空间,但是水能否自由的进出这些空间,以及岩土保持水的能力,却与岩土表面控制水分活动的条件、性质有很大的关系。这些与水分的贮容、运移有关的岩石性质,称为含水介质的水理性质,包括岩土的容水性、持水性、给水性、贮水性、透水性及毛细性等。
1)容水性指在常压下岩土空隙能够容纳一定水量的性能,以容水度来衡量。容水度(Wn)定义为岩土容纳水的最大体积Vn与岩土总体积V之比,即Wn=Vn/V×100%。由定义可知,容水度Wn值的大小取决于岩土空隙的多少和水在空隙中充填的程度,如全部空隙被水充满,则容水度在数值上等于孔隙度;对于具有膨胀性的粘土,充水后其体积会增大,所以容水度可以大于孔隙度。
2)持水性饱水岩土在重力作用下排水后,依靠分子力和毛管力仍然保持一定水分的能力称持水性。持水性在数量上用持水度表示。持水度Wr定义为饱水岩土经重力排水后所保持水的体积Vr和岩土总体积V之比。即Wr=Vr/V×100%,其值大小取决于岩土颗粒表面对水分子的吸附能力。在松散沉积物中,颗粒愈细,空隙直径愈小,则同体积内的比表面积愈大,Wr,愈大。
3)给水性 指饱水岩土在重力作用下能自由排出水的性能,其值用给水度(μ)来表示。给水度定义为饱水岩土在重力作用下,能自由排出水的体积Vg和岩土总体积V之比,即μ=Vg/V×100%。
由上述3个定义可知:岩土持水度和给水度之和等于容水度(或孔隙度),即Wn=Wr+μ或n = Wr+μ。式中n为孔隙度。
4)透水性 指在一定条件下,岩土允许水通过的性能。透水性能一般用渗透系数K值来表示。其值大小首先与岩土空隙的直径大小和连通性有关,其次才和空隙的多少有关。如粘土的孔隙度很大,但孔隙直径很小,水在这些微孔中运动时,不仅由于水与孔壁的摩阻力大而难以通过,而且还由于粘土颗粒表面吸附形成一层结合水膜,这种水膜几乎占满了整个孔隙,使水更难通过。透水层与隔水层虽然没有严格的界限,不过常常将渗透系数K值小于0.001米/日的岩土,列入隔水层,大于或等于此值的岩土属透水层。
5)贮水性 上述岩土的容水性和给水性,对于埋藏不深、厚度不大的潜水(无压水)来说是适合的,但对于埋藏较深的承压水层来说,往往存在明显的误差。主要原因是在高压条件下释放出来的水量,与承压含水介质所具有的弹性释放性能以及来自承压水自身的弹性膨胀性有关。通常,埋藏愈深,承压愈大则误差愈大。因而需要引入贮水性概念。承压含水介质的贮水性能可用贮水系数或释水系数表示,其定义为:当水头变化为一个单位时,从单位面积含水介质柱体中释放出来的水体积,称为释水系数(s),它是一个无量纲的参数。大部分承压含水介质的s值大约从10-5变化到10-3。
蓄水构造
所谓蓄水构造,是指由透水岩层与隔水层相互结合而构成的能够富集和贮存地下水的地质构造体。一个蓄水构造体需具备以下3个基本条件,第一,要有透水的岩层或岩体所构成的蓄水空间;第二,有相对的隔水岩层或岩体构成的隔水边界;第三,具有透水边界,补给水源和排泄出路。 不同的蓄水构造,对含水层的埋藏及地下水的补给水量、水质均有很大的影响。尤其在坚硬岩层分布区,首先要查明蓄水构造,才能找到比较理想的地下水
  垂直分布结构
源。这类蓄水构造主要有:单斜蓄水构造、背斜蓄水构造、向斜蓄水构造、断裂型蓄水构造、岩溶型蓄水构造等。在松散沉积物广泛分布的河谷、山前平原地带,有人根据沉积物的成因类型,空间分布及水源条件,区分为山前冲洪积型蓄水构造、河谷冲积型蓄水构造、湖盆沉积型蓄水构造等。
 
成分用途
 
地下水与人类的关系十分密切,井水和泉水是我们日常使用最多的地下水。不过,地下水也会造成一些危害,如地下水过多,会引起铁路、公路塌陷,淹没矿区坑道,形成沼泽地等。同时,需要注意的是:地下水有一个总体平衡问题,不能盲目和过度开发,否则容易形成地下空洞、地层下陷等问题。
赋存在地下岩土空隙中的水。含水岩土分为两个带,上部是包气带 ,即非饱和带 ,在这里,除水以外,还有气体。下部为饱水带,即饱和带。饱水带岩土中的空隙充满水。狭义的地下水是指饱水带中的水。地下水可开发利用,作为居民生活用水、工业用水和农田灌溉用水的水源。地下水具有给水量稳定、污染少的优点。含有特殊化学成分或水温较高的地下水,还可用作医疗、热源、饮料和提取有用元素的原料。在矿坑和隧道掘进中,可能发生大量涌水,给工程造成危害。在地下水位较浅的平原、盆地中,潜水蒸发可能引起土壤盐渍化;在地下水位高,土壤长期过湿,地表滞水地段,可能产生沼泽化,给农作物造成危害。
  地下水体系作用势
地下水中分布最广的是钾、钠、镁、钙、氯、硫酸根和碳酸氢根7 种离子。地下水中各种离子、分子和化合物的总量称总矿化度 ,总矿化度小于1克/升的 ,称淡水,1~3克/升的 ,称微水,3 ~ 10克/升的,称咸水 ,10~50克/升的,称盐水,大于 50 克/升的,称卤水。地下水中钙、镁、铁、锰、锶、铝等溶解盐类的含量称硬度,含量高的硬度大,反之硬度小。
绝大多数地下水的运动属层流运动。在宽大的空隙中,如水流速度高,则易呈紊流运动。地下水主要有降水入渗、灌溉水入渗、地表水入渗补给,越流补给和人工补给。在一定条件下,还有侧向补给。地下水的排泄主要有泉、潜水蒸发、向地表水体排泄、越流排泄和人工排泄。泉是地下水天然排泄的主要方式。
如果该内容侵犯了您的权益,请联系我们。
 
 
欧陆科仪(远东)有限公司 2018 版权所有©
Copyright 2018 EURO TECH (FAR EAST) LTD. All rights reserved